
Collibra and Snowflake

Policy enforcement v1.0.2
Name Collibra and Snowflake for Data Access Policy enforcement

Category Integration

Use Case To share controlled and secure data access across Snowflake
analytic, machine learning and ETL services.

Target Audience Policy enforcement

Who can set it up Integration Engineer

Target Business
Functions Any

Target Industries Any

License
Requirements

Collibra Platform

Collibra Catalog

Dependencies

Collibra Platform v2021+

Snowflake JDBC Driver 3.13.3

Java Development Kit v1.11

Spring Boot framework v2.5.0

Developer Collibra

License Binary Code License Agreement

Short
Description

A Spring Boot integration that takes requests from Collibra and
consume Snowflake jdbc connections to create and update object
tags, attach, and detach object tags to resources (columns), grant
and revoke roles to and from Snowflake account users.

Overview 4

Requirements 4

Data classification 5

Data categories 6

Data usage requests 7

Snowflake access security 8

Constraints worth noting 9

Assets 11

Coming soon 26

Overview
Snowflake access control is a service that makes it easy to set up, secure, and
manage your data lake. Snowflake Access control privileges determine who can access
and perform operations on specific Snowflake objects. Snowflake’s approach to access
control combines aspects from both the following two models:

• Discretionary Access Control (DAC): Each object has an owner, who can in turn
grant access to that object.

• Role-based Access Control (RBAC): Access privileges are assigned to roles,
which are in turn assigned to users.

In the Snowflake model, access to securable objects is allowed via privileges assigned to
roles, which are in turn assigned to other roles or users. In addition, each securable object
has an owner that can grant access to other roles. This model is different from a user-
based access control model, in which rights and privileges are assigned to users. The
Snowflake model is designed to provide a significant amount of both control and flexibility.

Roles are the entities to which privileges on securable objects can be granted and
revoked. Roles are assigned to users to allow them to perform actions required for
business functions in their organization. This allows users to switch to and from roles
(i.e. choose which role is active in the current Snowflake session) to perform different
actions using separate sets of privileges.

This integration will map roles to Collibra business processes such as direct marketing
or customer churn analysis but could well be extended and applied to any available asset
type with little to no effort. If you wish to do that, please note that access requesters will
need to understand what role they need to be granted access to, and access approvers
will need to be know exactly what that access entails.

Requirements
R As the data lake admin, I want to add and remove data classifications to Snowflake

resources so I can enable fine-grained access controls

R As the data lake admin, I want to add and remove data categories to Snowflake
resources so I can enable fine-grained data access controls

R As the data lake admin, I want to know what classifications and categories are and
have been granted to each available Snowflake resource

R As the data consumer I want to request and have access granted to given named
resources so I can leverage data for competitive advantage

R As the data consumer I want to know of all my data access requests which data access
requests have or have not been granted and the reasons

R As the data steward or data owner I want to share controlled secure access to the
right data to the right user, so I protect available sensitive data

R As the data steward or data owner I want to know of all the data access requests
which requests have or have not been granted and the reasons

Data classification
After a data table is ingested, a data steward is required to navigate to the table asset
page and run classification. Data Classification leverages Machine Learning to
help classify and tag the data in the various columns of a table. Stewardship takes those
recommendations and let a Steward map them to a conceptual model so they can
ultimately be connected to concepts familiar to the busines users. Workflows can be built
to further automate this process by automatically accepting recommendations when
above a given confidence threshold. Please refer to the Collibra Product documentation
here for more information about data classification. For a complete list of the packaged
data classes please check here.

Tags by themselves don’t enforce any security controls but applying a good tagging
strategy is a great way to describe the data. Tags are key-value pairs that you can apply
for your Snowflake resources, including table and columns in your data lake. This
integration applies a very simple tagging strategy: for the columns that have been
classified as Name, make Classification tag equals Name; for columns that contain
Personally Identifiable Information, make Category tag equals Personally Identifiable
Information. The tagging strategy can be extended and applied to any available asset
type with little to no effort.

Data categories
Data Categories allow Privacy Stewards to classify data, specifically as it concerns its
level of sensitivity, value and criticality. They help determine privacy and security controls
for data protection. Take for example the Personally Identifiable Information (PII) data
category. PII is classified as Restricted Data and unauthorized disclosure, alteration or
destruction may result in significant risk to the organisation and its data subjects. It
requires the highest level of access control and security protections whether in storage or
in transit. The diagram below shows where your customer PII restricted data is found.

Before granting access to the required data, it is vital to make sure that identity and access
management rules are adhered to and the principals of regulatory concerns, if
appropriate, are enforced. When data access policies are straightforward and can be
addressed at the time of extraction (e.g., Social Security Number must be masked or
removed), it can and should be enforced as part of the extraction instructions, where it is
most efficient. Some enforcement though cannot be achieved prior to or at the time of

data extraction. For example, some attributes by themselves (e.g., Last Name or Date of
Birth) are not considered Personally Identifiable Information (PII); however, in
combination with one or more attributes (e.g., Last Name + Date of Birth), can become
PII. Thus, the request for and availability of identity attributes must be determined both at
time of data extraction and after in a continuous exercise ensuring policies are enforced.

You are required to connect the physical data layer to the logical data layer by filtering on
the conceptual data layer. Unless fully connected, no access should be granted unless
explicitly approved by the right authorities tasked to ensure that sensitive data is not lost,
misused, or accessed by unauthorized users.

Data usage requests
As new users and workloads are onboarded to your data lake, security and governance
become more of a priority - and in many cases, a hindrance to the data scientists and
analysts seeking to leverage data for competitive advantage and business innovation.
The costs of failing to protect sensitive data are high and can include regulatory penalties,
reputational damage, even a direct loss of customers.

Collibra and Snowflake enables data platform teams to provide secure data access at
scale, service the enterprise governance requirements, and enable self-service data
analytics to increase usage and adoption of the data lake and ensure its success within
the enterprise. Collibra and Snowflake enforces data access policies at run-time, so each
user will only see the data they are authorized to view. Access restrictions can be applied
at the table and column, and Snowflake allows for a variety of de-identification types,
including masking, redaction, tokenization. Technical stewards (and owners if no steward
assigned) are prompted to grant the requesting user access to resources.

Snowflake access security
Snowflake ensures the highest levels of governance for your account and users, as well
as all the data you store and access in Snowflake.

Note: Row access policies and access history services are out of scope of this document.

Check out Using Dynamic Data Masking with Snowflake for more details here and here.

Column-level Security allows the application of a masking policy to a column within a table
or view and currently comprises two features:

• Dynamic Data Masking
• External Tokenization

External Tokenization allows organizations to tokenize sensitive data before loading that
data into Snowflake and dynamically detokenize data at query runtime using masking
policies with External Functions. It is important to notice that external tokenization cannot
be used with Snowflake Data Sharing today.

Note: External Tokenization is out of the scope of this document.

Constraints worth noting
R Snowflake tags and roles must be unique for your schema.
R Snowflake tags and roles must start with an alphabetic character and cannot contain

spaces or special characters unless the entire identifier string is enclosed in double
quotes. Identifiers enclosed in double quotes are also case-sensitive.

R Snowflake stored procedures use JavaScript and, in most cases SQL where
JavaScript provides the control structures (branching and looping) and SQL is
executed by calling functions in a JavaScript API.

R Snowflake limits tags to one tag value per tag key.
R Snowflake does not support different input and output data types in a masking

policy, such as defining the masking policy to target a timestamp and return a string
(e.g. ***MASKED***); the input and output data types must match.

R Snowflake applies the masking policy to table or view column, not an object tag.
R Currently, can't tell from within the masking policy which column this masking policy

is set to or running against and there’s only an handful number of functions available.

R Requires Collibra Catalog Guided Stewardship Workflow + Sample content here.

This integration targets those customers who have their data in Snowflake and aim at
delivering controlled secure access to the right data, to the right persona, at the right time.

This integration will map roles to Collibra business processes such as direct marketing or
customer churn analysis but could well be extended and applied to any available asset
type with little to no effort. If you need or wish to do that, please note that data access

requesters will need to understand what roles or groups they need to be granted access
to, and data access approvers will need to be know exactly what that data access entails.

R Supports basic authentication only

Assets
Collibra Data Intelligence Platform assets

Attributes Description

Catalog or Database Identifier The Snowflake catalog Identifier (account Id).

Principal or User Identifier The user being granted or revoked access.

Tag Key The Snowflake object tag key name.

Tag Values The Snowflake object tag key values. *

Tag Values To Add The Snowflake object tag key values to add. *

Tag Values To Delete The Snowflake object tag key values to delete.

Database Name The Snowflake catalog Identifier (account Id).

Schema Name The Snowflake catalog Database name or Id.

Table Name The Snowflake catalog Table name identifier.

Column Names A list of Snowflake catalog Column identifiers.

* Snowflake limits to one tag value per tag key

Asset Type Description

Add Tags To Snowflake Resource An issue or ticket issued when requesting adding an
object tag to a given Snowflake catalog named
resource such as a column of a table.

Grant Snowflake Permissions to User An issue or ticket issued when requesting access to
given Snowflake catalog named resources such as
column of table, or existing user role.

Remove Tags from Snowflake Resource

An issue or ticket issued when requesting removing
an object tag from a given Snowflake catalog named
resource such as a column of a table.

Revoke Snowflake Permissions from User

An issue or ticket issued when requesting revoking
access to given Snowflake catalog named resources
such as column of table, or existing user role

Update Snowflake Tag Key and Values Not required. An issue or ticket issued when
requesting creating or updating a given Snowflake
tag key and values. Can be fulfilled by the Add Tags
to Snowflake Resource above if not already found.

Workflows Description

Add Category to Snowflake Resource Attach a data category to an existing Snowflake
catalog named resource.

Add Classification to Snowflake Resource Attach a classification to an existing Snowflake
catalog named resource.

Remove Classification from Snowflake Resource Detach a classification from an existing Snowflake
catalog named resource.

Grant Access To Snowflake Resources Grant user access to an existing Snowflake catalog
named resource.

Grant Access To Snowflake Roles Grant user access to an existing Snowflake catalog
policy tag value.

Request Access To Snowflake Roles Request user access to an existing Snowflake
catalog policy tag.

Revoke Access to Snowflake Roles Revoke user access to an existing Snowflake
catalog policy tag value.

Data Provisioning Process Request access to all data sets referenced in the
shopping cart. The owners of the related data will
have to approve the request and access provisioned.

Post Http Requests to Snowflake Post http requests when an issue or ticket issued has
been successfully created and all its required
attributes successfully updated. This workflow is
making use of java.net which is last resort, not
recommended and will soon be disallowed. Instead,
we will, soon enough, make a springboot app
available which will be pulling ticket requests
instead. Check the next paragraphs for more details.

Collibra Data Intelligence Integration assets

Spring Boot starters Description

spring-boot-starter-web Starter for building web, including RESTful,
applications using Spring MVC.

spring-boot-starter-log4j2 Starter for using Log4j2 for logging.

spring-boot-starter-test The primary dependency that contains most
elements required for our tests.

spring-boot-starter-thymeleaf Starter for building MVC web applications using
Thyme leaf views.

spring-boot-starter-data-jpa Starter for using Spring Data JPA with Hibernate.

spring-boot-starter-security Starter for using Spring Security.

spring-boot-starter-actuator Starter for using Spring Boot's Actuator which
provides production ready features to help you
monitor and manage your application.

micrometer-registry-prometheus Application monitoring instrumentation façade to
Prometheus systems monitoring and alerting toolkit.

spring-boot-admin-starter-server Starter for using Spring Boot Admin Server.

spring-boot-admin-server-ui-login The Spring Boot Admin Server Login UI.

spring-boot-admin-starter-client Starter for registering client Spring Boot apps.

springdoc-openapi-ui

Starter for helping to automate the generation of API
documentation using spring boot projects.

jasypt-spring-boot-starter Starter for Java Simplified Encryption.

snowflake-jdbc Snowflake JDBC Driver

commons-io The Apache Commons IO library contains utility
classes, stream implementations, file filters, file
comparators, endian transformation classes, and
much more.

Spring Boot packages Description

com.collibra.snowflake.template.config Bean definitions for this simple web application
context including springdoc OpenApi 3 configuration
for automatically generating swagger OAS3
documentation in JSON/YAML and swagger UI.

com.collibra.snowflake.template.controller The web controllers for this simple web application.
Includes controllers for the command, role, and tag
services. Annotations ensure http get and post
requests are mapped to the right service methods.

com.collibra.snowflake.template.model The JPA entities for this simple web application.
Entities in JPA are nothing but POJOs representing
data (commands issued in our case) that can be
persisted to a relational database like Snowflake.

com.collibra.snowflake.template.repository The repository interfaces for each domain entity in
this simple web application. It contains methods for
performing CRUD operations including some of
count, delete, deleteById, save, findById, and findAll.

com.collibra.snowflake.template.security Enable Spring Security’s web security support and
provide the Spring MVC integration. Defines which
URL paths should be secured and which should not.
Paths have been configured not to require any
authentication, but these could/should be changed.

com.collibra.snowflake.template.service The service components holding this simple web
application business logic.

Apllication This simple Web Application

Spring Boot resources Description

static/* UI objects and styling aspects can be located here.

templates/* Template files. All the SQL scripts do set, or unset
tags, grant or revoke roles can be located here.

application.properties A list of common Spring Boot properties, additional
Spring configuration metadata and references to the
underlying classes that consume them. Sample list:
server.port=8080
management.server.port=8081
spring.application.name=Snowflake agent
spring.boot.admin.context-path=/
springdoc.swagger-ui.path=/swagger-ui.html

Configuration resources Description

pom.xml XML file that contains configuration details used by
Maven to build this simple web application project.

Dockerfile Text document that contains all the commands to
assemble a Docker image.

Expose and use Spring Boot Admin Server

Admin endpoint Description

/ Expose operational information about the running
application including health, metrics, info, env, etc

Spring Boot Admin is a community project under Apache License 2.0 to manage and
monitor your Spring Boot applications.

The UI is just a Vue.js application on top of the Spring Boot Actuator endpoints.

Expose and monitor operational information

Management endpoint Description

/management Expose operational information about the running
application including health, metrics, info, env, etc

Spring Boot Actuator endpoints let you monitor and interact with your application. Each
individual endpoint can be enabled and made remotely accessible over HTTP and metrics
fed to monitoring systems like Prometheus and to graphing solutions like Grafana.

Prometheus is usually used along side Grafana. Grafana is a visualization tool that pulls
Prometheus metrics and makes it easier to monitor.

Grafana also lets you set alert rules based on your metrics data.

Spring Boot uses Micrometer, an application metrics facade to integrate actuator metrics
with external monitoring systems. It supports several monitoring systems like Netflix Atlas,
AWS Cloudwatch, Datadog, InfluxData, SignalFx, Graphite, Wavefront, Prometheus etc.

Visualize and interact with OAS3 resources

OAS3 Documentation Description

/swagger-ui.html Visualize and interact with the OpenAPI’s resources.

Swagger UI allows you to visualize and interact with the API’s resources without having
any of the implementation logic in place. It’s automatically generated from the OpenAPI
(formerly known as Swagger) Specification, with the visual documentation making it easy
for back-end implementation and client-side consumption.

Install the Collibra Metadata Archive (cma)

Migration allows an administrator to export parts of the Operating Model from one Collibra
instance, and import it into another Collibra instance, while retaining the resource IDs. It
is highly recommended not to make changes directly to the metamodel of your Production
environment. Instead, we recommend you use a separate Development environment and
Testing environment and make sure these changes work well for you before pushing
changes to the metamodel of your Production environment.

1. Create a backup of your production environment.

2. Restore the backup in your Development and Testing environments.

3. Make the necessary changes in your development environment if any.

4. Re-apply the changes from the Development environment to the Testing environment.

5. Thoroughly test the changes in the Testing environment.

6. If required, repeat steps 3 to 5.

7. When satisfied with the changes, re-apply the changes to your Production environment.

To apply changes and import the resources simply upload the included cma archive file.

Install the Spring Boot Application archive

Spring Boot’s flexible packaging options provide a great deal of choice when it comes to
deploying your application. You can deploy Spring Boot applications to a variety of cloud
platforms, to container images (such as Docker), or to virtual/real machines.

This distribution includes the compiled code and package it in its distributable format JAR
for you. The archive can be found under the target folder target/sbi-template-snowflake-
1.0.2-SNAPSHOT.jar. Check the Dockerfile file if you choose to deploy to Containers.

Spring Boot’s executable jars are ready-made for most popular cloud PaaS (Platform-as-
a-Service) providers and have everything that it needs to run packaged within these.

In addition to running Spring Boot applications by using java -jar, it is also possible to
make fully executable applications for Unix systems. A fully executable jar can be
executed like any other executable binary or it can be registered with init.d or systemd.

To create a ‘fully executable’ JAR with Maven, use the following plugin configuration:

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <executable>true</executable>
 </configuration>
</plugin>

Check the next paragraphs for details on how to compile and package your JAR archive.

Package your app in a distributable format

Spring Boot is compatible with Apache Maven 3.2 or above. If you don't already have
Maven, first download it from https://maven.apache.org. If your machine doesn't already
have Java 11 or above, first download Java 11 or above from the official Oracle website.

This distribution creates a project structure and a Maven build specification for you. The
pom file lists the minimum requirement for this simple Spring Boot web application. If you
need or wish to package your app yourself, import this project to your favorite IDE. If you
are using Visual Studio Code IDE, you may want to check the workspace file available.

Alternatively, find your pom.xml file and run mvn clean package from that same folder.

$ mvn clean package
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< com.collibra:sbi-template-snowflake >-----------------
[INFO] Building demo 1.0.2-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] --- maven-clean-plugin:3.1.0:clean (default-clean) @ sbi-template-snowflake ---
[INFO] Deleting /Users/sbi.template/Documents/github/sbi_template_snowflake/target
[INFO]
[INFO] --- maven-resources-plugin:3.2.0:resources (default-resources) @ sbi-template-
snowflake ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Using 'UTF-8' encoding to copy filtered properties files.
[INFO] Copying 1 resource
[INFO] Copying 9 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) @ sbi-template-
snowflake ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 17 source files to
/Users/sbi.template/Documents/github/sbi_template_snowflake/target/classes
[INFO]
[INFO] --- maven-resources-plugin:3.2.0:testResources (default-testResources) @ sbi-
template-snowflake ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Using 'UTF-8' encoding to copy filtered properties files.
[INFO] skip non existing resourceDirectory
/Users/sbi.template/Documents/github/sbi_template_snowflake/src/test/resources
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:testCompile (default-testCompile) @ sbi-
template-snowflake ---
[INFO] Changes detected - recompiling the module!
[INFO]
[INFO] --- maven-surefire-plugin:2.22.2:test (default-test) @ sbi-template-snowflake -
--
[INFO]
[INFO] --- maven-jar-plugin:3.2.0:jar (default-jar) @ sbi-template-snowflake ---
[INFO] Building jar:
/Users/sbi.template/Documents/github/sbi_template_snowflake/target/sbi-template-
snowflake-1.0.2-SNAPSHOT.jar
[INFO]
[INFO] --- spring-boot-maven-plugin:2.4.5:repackage (repackage) @ sbi-template-
snowflake ---
[INFO] Replacing main artifact with repackaged archive
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 3.039 s
[INFO] Finished at: 2021-09-20T22:36:41+02:00
[INFO] --

Prerequisites to run your Spring Boot app

Properties that must be specified inside your Spring Boot application.properties file.

Application.properties

server.port Specifies the HTTP port of a Spring Boot application.
Default 8080.

management.server.port Specifies the HTTP port of the management server.
Default 8081.

spring.datasource.username Specifies the login of the user for the connection.
Default SBI_TEMPLATE_SNOWFLAKE.

spring.datasource.password The jasypt encrypted password for the specified user

sbi_template_snowflake.datasource.userrole Specifies the default access control role to use in the
Snowflake session initiated by the driver. The
specified role should be an existing role that has
already been assigned to the specified user for the
driver. If the specified role has not already been
assigned to the user, the role is not used when the
session is initiated by the driver. Default
SBI_TEMPLATE_SNOWFLAKE.

sbi_template_snowflake.datasource.warehouse Specifies the virtual warehouse to use once
connected, or specifies an empty string. The
specified warehouse should be an existing
warehouse for which the specified default role has
privileges.

sbi_template_snowflake.datasource.database Specifies the default database to use once
connected or specifies an empty string. The
specified database should be an existing database
for which the specified default role has privileges.

sbi_template_snowflake.datasource.schema Specifies the default schema to use for the specified
database once connected or specifies an empty
string. The specified schema should be an existing
schema for which the specified default role has
privileges.

sbi_template_snowflake.datasource.account Specifies the default snowflake account identifier.

Use the jasypt.jar java archive found in the distribution to get your encrypted password:

java -cp jasypt-1.9.3.jar org.jasypt.intf.cli.JasyptPBEStringEncryptionCLI
algorithm=PBEWithHmacSHA512AndAES_256

ivGeneratorClassName=org.jasypt.iv.RandomIvGenerator password=<your encryption
password> input=<the password to be encrypted>

Your application.properties jasypt encrypted password can be found in the output section.

----ENVIRONMENT-----------------

Runtime: Oracle Corporation Java HotSpot(TM) 64-Bit Server VM 13.0.2+8

----ARGUMENTS-------------------

input: <the password to be encrypted>
password: <your encryption password>
ivGeneratorClassName: org.jasypt.iv.RandomIvGenerator
algorithm: PBEWithHmacSHA512AndAES_256

----OUTPUT----------------------

BfyOlXMYg3kvbaMSmIwupisRnsPs/3nk8QM68d5BdP39WVNC7s484s3KEf4rvo/F

Before running this simple app, get your data source ready to accept incoming requests:

R create the database user
R create the default access control role
R create the default database shema to use
R create the table holding a list of commands issued
R create the table holding the masking policies to apply
R grant all table, schema, tag and apply masking policy grants
R create a few sample masking policies for illustrating how these work
R create a couple of procedures illustrating how set and unset masking policies work
R import privileges on the Snowflake database

This distribution includes a simple init.sql file that will alleviate most of the work for you.

A couple of paragraphs about the sample masking policies and masking procedures:

R sample masking policies provided

R policies for address, customer identifier, name, phone number data classifications
R clears the values if protection method not found or undefined for a given active role
R otherwise protects with either sha2 or hash depending on if text or number values
R an entitlements table helps the policies decide what to protect and unprotect when

R sample procedures for attaching and detaching masking policies provided

R the first sets the masking policy depending on if classification and category found
R does nothing if no classification and no category tag set for a given table column
R does nothing if no masking policy found for a given classification and/or category

R the second detaches the masking policy if no remaining object tags are assigned

R protection methods limited to sha2 and hash for now but could possibly be extended.

A good option is using a custom entitlement table for determining when values should be
protected, what protection method to use and under what circumstances. We may want
to protect our customer’s names in most cases and clear them when granting access for
conducting direct marketing activities where we potentially would need to address to an
individual by its name for example. Representative examples showing how to create
masking policies using a mask, a hash, a regular expression, and UDF can be found here.

global view

asset grid view

entitlements table

Note: protection methods depend on the data classification and data category (standard).
We may have a name classified column which by default should be protected and cleared
once realized this same name column holds the name of an event for example and not
restricted. Can't tell from the masking policy which column this policy is set to and there’s
only a handful number of functions available. One way to go about this is to map masking
policies to data classifications and categories and have these unset and set accordingly.

For example:

1. Connect a given column to the customer address data attribute and concept
suggesting that column is of restricted access – set default restricted masking policy.

2. Add an Address data classification to that same column and being more specific
about what is is to be protected and secured – set the address default masking policy.

3. A given user was granted access to the ‘Direct Marketing’ business process or role.
When using that role (active role), that same column would be cleared for that user.

address diagram view explore

address column tag references

customer table policy references

Note: When connecting that same column to the address data concept of an event data
domain or any other data category of public access – unset that column masking policy.

Run your Spring Boot app

The Spring Boot Maven plugin includes a run goal which can be used to quickly compile
and run your application with mvn spring-boot:run. Before running your application:

Set your jasypt encryption password by exporting JASYPT_ENCRYPTOR_PASSWORD

export JASYPT_ENCRYPTOR_PASSWORD=<your encryption password>

or set the jasypt.encryptor.password property when launching your application jar archive

-Djasypt.encryptor.password=<your encryption password>

$ mvn spring-boot:run -Djasypt.encryptor.password=<your encryption password>
[INFO] Scanning for projects...
[INFO]
[INFO] ----------------< com.collibra:sbi-template-snowflake >-----------------
[INFO] Building demo 1.0.2-SNAPSHOT
[INFO] --------------------------------[jar]---------------------------------
[INFO]
[INFO] >>> spring-boot-maven-plugin:2.4.5:run (default-cli) > test-compile @ sbi-
template-snowflake >>>
[INFO]
[INFO] --- maven-resources-plugin:3.2.0:resources (default-resources) @ sbi-template-
snowflake ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Using 'UTF-8' encoding to copy filtered properties files.
[INFO] Copying 1 resource
[INFO] Copying 9 resources
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:compile (default-compile) @ sbi-template-
snowflake ---
[INFO] Nothing to compile - all classes are up to date
[INFO]
[INFO] --- maven-resources-plugin:3.2.0:testResources (default-testResources) @ sbi-
template-snowflake ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Using 'UTF-8' encoding to copy filtered properties files.
[INFO] skip non existing resourceDirectory /Users/sbi.template/Documents/sbi-template-
snowflake/src/test/resources
[INFO]
[INFO] --- maven-compiler-plugin:3.8.1:testCompile (default-testCompile) @ sbi-
template-snowflake ---
[INFO] Nothing to compile - all classes are up to date
[INFO]
[INFO] <<< spring-boot-maven-plugin:2.4.5:run (default-cli) < test-compile @ sbi-
template-snowflake <<<
[INFO]
[INFO]
[INFO] --- spring-boot-maven-plugin:2.4.5:run (default-cli) @ sbi-template-snowflake -
--
[INFO] Attaching agents: []
…
[2021-09-21 10:45:52.674][INFO][http-nio-0.0.0.0-8081-exec-
1][org.springframework.web.servlet.DispatcherServlet] Completed initialization in 0 ms

Alternatively, you can simply run your application using java -jar. For example

$ java -Djasypt.encryptor.password=<your encryption password> -jar target/sbi-template-
snowflake-1.0.2-SNAPSHOT.jar

Coming soon
� Cost effectiveness with fast deployment and ability to run anywhere with docker containers.

� Productized integration and updated UX to enforce access control rules and access insights.

